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Abstract
The Darboux transformation for integrable equations with variable spectral
parameters is introduced. Darboux invariant quantities are calculated, which
are used in constructing the Lax pair of integrable equations. This approach
serves as a systematic method for constructing inhomogeneous integrable
equations and their soliton solutions. The structure functions of variable
spectral parameters determine the integrability and nonlinear coupling terms.
Three cases of integrable equations are treated as examples of this approach.

PACS numbers: 42.65.Tg, 05.45.Yv

1. Introduction

Recently, much interest has arisen in the construction of inhomogeneous integrable equations
[1–6]. This is because there exist many realistic physics problems in the inhomogeneous
systems. These include the inhomogeneous nonlinear Schrödinger equation (NLSE) with
variable spectral parameters, which describes the transmission of solitons through the
varying dispersion-managed optical fiber [7, 8]. There have also been interesting studies
of inhomogeneous NLSEs, including the dc–ac system, the Painlevé test of inhomogeneous
NLSEs and construction of modified NLSEs [9–12]. Another development of inhomogeneous
integrable equations was the problem of the Heisenberg spin chain having a site-dependent
interaction term [13–15], which can be treated by the inverse scattering problem with variable
spectral parameters. It has also been shown that the inhomogeneous self-induced-transparency
problem, especially with a pumping term, can be described by the complex sine-Gordon
equation with variable spectral parameters [11, 16, 17]. All these developments show that a
systematic method in the construction of inhomogeneous integrable equations with variable
spectral parameters is strongly required.

There exists a systematic method in constructing nonlinear integrable equations, especially
effective for equations of complex nature, based on the principle of Darboux covariance
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[18–21]. The method first finds the Darboux invariants of the Lax pair, U and V , and these
Darboux invariants are used to determine some matrix elements of U and V . (It has been set
to be constants.) Note that the Darboux transformation is used to obtain a new solution for
the field variables from an old one. Thus, matrix elements of U and V which are not Darboux
invariants are field variables or their functionals. Hayashi and Nozaki [18] were the first to use
these Darboux invariants in constructing a Lax pair of integrable equations, U,V ∈ su(2).
A more general type of integrable equation based on the U,V ∈ gl(2, C) was constructed in
[19], while [20] used the Darboux invariance to construct AZKN-type integrable equations.
A generalization of the method that sets the Darboux invariants to be nonconstants (in fact,
explicit functions of z and z̄, which will be called inhomogeneity functions in the following)
have been studied in [22, 23]. This generalization results in a new class of inhomogeneous
equations, which were not obtained from the conventional approach. Up to now, all these
developments of Darboux invariants method were applied to equations with constant spectral
parameters. The equations with nonconstant Darboux invariants and with variable spectral
parameters should expand the possible class of inhomogeneous integrable equations. This is
the main motivation of the present work.

The Lax pair U,V arises from the associated linear problem of integrable equations,

∂� =
M∑

m=−M̄

λmUm� ≡ U(λ)�,

(1)

∂̄� =
N∑

n=−N̄

λnVn� ≡ V (λ)�,

where ∂ ≡ ∂/∂z, ∂̄ ≡ ∂/∂z̄ and λ is the spectral parameter. Here we use the Darboux
invariants to construct U,V ∈ su(2) for three cases; case A: (M = 1, M̄ = 0), case B:
(M = 2, M̄ = 0) and case C: (M = M̄ = 1) for equations with variable spectral parameters,
see [18] for cases of constant spectral parameter. For this, the Darboux transformation for
equations with variable spectral parameters is introduced and Darboux invariants according
to this transformation are constructed (section 2). Some explicit integrable equations are
constructed using these Darboux invariant quantities as a guiding principle in constructing U
and V (section 3). It is found that the variable spectral parameter, satisfying equation (2),
is related to the integrability by requiring αM = 0, as well as the appearance of nonlinear
terms with integrals on field variables (through coupling with βN or βN−1). So the
structure of inhomogeneous integrable equations are determined by αi, βi of equation (2)
which we will call structure functions of variable spectral parameters. Section 4 calculates
one-soliton solutions for the three cases of integrable equations by using the Darboux
transformation.

2. Darboux invariants

2.1. Variable spectral parameter

In this paper, we consider nonlinear integrable equations defined by the Lax pair that can be
expressed in terms of 2×2 su(2) matrices Ui(ψ, z, z̄), Vi(ψ, z, z̄) in equation (1). Here ψ(z, z̄)

denotes the field variable of integrable equations (additionally φ,R,Q for cases of multi-field
variables). U and V for inhomogeneous equations contain inhomogeneity functions of z, z̄ as
well as λ(z, z̄), ψ(z, z̄). The variable spectral parameter λ(z, z̄) satisfies certain relations of
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the type, and we consider the following case in this paper:

∂λ(z, z̄) =
M∑

m=−M̄

λmαm, ∂̄λ(z, z̄) =
N∑

n=−N̄

λnβn, (2)

where the structure functions αi, βi are real functions of z and z̄.
The existence of λ(z, z̄), i.e., ∂∂̄λ(z, z̄) = ∂̄∂λ(z, z̄), constrains the form of αi and βi .

The properties of equation (2), including the possible forms of αi and βi , are discussed in [16].
We will mention their results where necessary.

2.2. Compatibility of the Lax pair

The compatibility of two equations in equation (1), i.e., the Lax pair, for any value of λ(z, z̄)

requires

∂̄Uk − ∂Vk +
∞∑

m=−∞
([Um, Vk−m] + mβk+1−mUm − mαk+1−mVm) = 0. (3)

Here we have extended our notation so that Um = αm = 0, for m < −M̄ or m > M , and
Vn = βn = 0 for n < −N̄ or n > N . Equation (3) gives constraints on Um, Vm, αm, βm for
k �= 0 (and k �= 1 for case (C)) while it becomes the equation of motion for k = 0 (and k = 1
for case (C)).

2.3. Darboux transformation

Now consider the Darboux transformation [24, 25]

� → �[N] : �[N] = S(λ, λ1)[λ − λ∗
1 − (λ1 − λ∗

1)P ]� ≡ S(λ, λ1)[λ − σ ]�. (4)

Here the projection operator (P 2 = P) is defined

P = �1�
†
1

�
†
1�1

, (5)

where the 2-component column matrix �1 is a solution of the linear equation in equation
(1) at a specific value of λ = λ1. The Darboux transformation in the form of equation (4)
is introduced in [25] without the S(λ.λ1) factor. Here, for equations with variable spectral
parameter S(λ.λ1) is introduced to make det � = det �[N] = 1, which is required because
U(λ) ∈ su(2)-algebra and � ∈ SU(2)-group in equation (1). A similar form of the Darboux
transformation was introduced in [26]. Thus,

S(λ, λ1) = (det[λ − σ ])−1/2 = {λ2 − (λ1 + λ∗
1)λ + λ1λ

∗
1}−1/2. (6)

By using equation (2), we obtain

S−1∂S = −
n=M∑
n=1

αn

n−1∑
m=0

	(m)λn−1−m +
n=M̄∑
n=1

α−n

n∑
m=1

	(−m)λ−n−1+m, (7)

where

	(m) = λm
1 + λ∗m

1

2
. (8)

S−1∂̄S are given similarly. The appearance of S(λ, λ1) is the most distinguishing feature of
the present formalism.
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By considering this requirement resulting from equation (1) with Um → U [N]
m , Vn →

V [N]
n ,� → �[N], we can obtain following relation:∑

λmU [N]
m (λ − σ) = (λ − σ)

∑
λmUm + S−1∂S(λ − σ) + ∂(λ − σ), (9)

and a similar relation for Vn. Explicitly, equation (9) requires that

U
[N]
M = UM,

U
[N]
M−1 = UM−1 + [UM, σ ],

U
[N]
M−j = UM−j + [UM−j+1, σ ] + [UM−j+2, σ ]σ + · · · + [UM, σ ]σ j−1

−
j∑

m=2

αM−j+m{	(m − 1) − σm−1} (10)

and

U
[N]
−M̄

= σU−M̄σ−1 + α−M̄{	(−1) − σ−1},
U

[N]
−M̄+j

= σ {U−M̄+j + [U−M̄+j−1, σ
−1] + · · · + [U−M̄ , σ−1]σ−j+1}σ−1

+
j∑

m=1

α−M̄+m{	(−j − 1 + m) − σ−j−1+m}. (11)

2.4. Darboux invariants of U

The expression for U
[N]
M in equation (10) shows that it is invariant under the Darboux

transformation. As the Darboux transformation is used to obtain a new solution of field
variables like ψ [N](z, z̄) from an old one ψ(z, z̄), the invariance of UM under the Darboux
transformation means it should not contain field variables. In the present study, we take it that
UM can have explicit z, z̄-dependence such that

UM = f (z, z̄)T , (12)

where T = i
2

(
1 0
0 −1

)
and f (z, z̄) is an arbitrary real inhomogeneity function [22]. The

inhomogeneity function f (z, z̄) should satisfy constraints from the compatibility of the Lax
pair, but is not related to the field variables and remains unchanged under the Darboux
transformation.

The second equation of equation (10) leads to another Darboux invariant, Tr (UMUM−1).
This invariant means that the diagonal part of UM−1 is a Darboux invariant such that it cannot
contain field variables but could be an arbitrary real function. In this work, we take it to be
0, for simplicity. For more general cases where it is an arbitrary function, see [22] (for cases
having constant spectral parameter). Thus, we take

UM−1 =
(

0 ψ(z, z̄)

−ψ(z, z̄)∗ 0

)
. (13)

To find a Darboux invariant which contains UM−2, we first note that

Tr
((

U
[N]
M−1

)2
+ 2U

[N]
M−2U

[N]
M

) = Tr((UM−1)
2 + 2UM−2UM) + 2αMTr [UM{σ − 	(1)}] , (14)

where we have used equation (10). Equation (14) shows that Tr
(
U 2

M−1 + 2UM−2UM

)
becomes

a Darboux invariant when the structure function αM = 0 for M � 2. The condition
αM = 0,M � 2 is a new criterion for integrable equations having variable spectral parameter.
In this case, this Darboux invariant restricts the form of UM−2 as following:

UM−2 = −{2|ψ(z, z̄)|2/f (z, z̄) − 2F(z, z̄)}T +

(
0 φ(z, z̄)

−φ(z, z̄)∗ 0

)
, (15)
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where φ(z, z̄) is another field variable and F(z, z̄) is another inhomogeneity function (not
a field variable). This criterion, αM = 0,M � 2, seems too restrictive. But [16] shows
that the equations M̄ = 0 and M > 1 in equation (2) can be transformed to equations of
M̄ = 0,M = 1 by introducing a suitable change of the coordinates. This was called as the
polynomial case in [16].

Another Darboux invariant which contains U−M is obtained as follows. We first note that
P in equation (5) satisfies TrP = 1, which in turn results in Trσ−1 = 2	(−1). Applying this
relation to the first equation of equation (11) gives a Darboux invariant, TrU [N]

−M̃
= TrU−M̃ .

For α−M̃ = 0, we find another Darboux invariant Tr
(
U

[N]
−M̃

)2 = Tr(U−M̃ )2. These Darboux
invariants restrict the form of U−M̃ such that

U−M̃ =
(

iR Q

−Q∗ −iR

)
, (16)

where R2 + |Q|2 = κ(z, z̄), with an inhomogeneity function κ(z, z̄).

2.5. Darboux invariants of V

2.5.1. Invariants of VN, VN−1, and V−N̄ . The construction of Darboux invariants for V takes
similar step as in the case for U. Especially, the Darboux invariance for VN requires that VN

does not contain field variables. At the same time, the compatibility condition in equation (3)
at k = M + N requires that [UM,VN ] = 0. Thus we take

VN = g(z, z̄)T , (17)

where g(z, z̄) is an inhomogeneity function. g(z, z̄) will be determined by requiring the
compatibility.

Similarly as in Tr (UMUM−1), Tr (VNVN−1) is a Darboux invariant and we take

VN−1 =
(

ivN−1(z, z̄)/2 w(z, z̄)ψ(z, z̄)

−w(z, z̄)ψ(z, z̄)∗ −ivN−1(z, z̄)/2

)
, (18)

where vN−1(z, z̄) and w(z, z̄) are arbitrary functions. Contrary to the case of UM−1, we take
the inhomogeneity function vN−1 �= 0 in VN−1.

The invariant containing V−Ñ is obtained similarly as in the case of U−M̃ , and in this case
becomes Tr(V−Ñ ). In the case of β−Ñ = 0, we find another Darboux invariant, Tr(V−Ñ )2.

2.5.2. Invariant of VN−2. The most distinctive feature of equations with variable spectral
parameters arises in the construction of the VN−2 term. We first note the following identity
that can be derived in a similar way to as in equation (14):

Tr
((

V
[N]
N−1

)2
+ 2V

[N]
N V

[N]
N−2

) = Tr[(VN−1)
2 + 2VNVN−2 + 2βNVN {σ − 	(1)}]. (19)

Recall that the structure functions with αM �= 0, βN �= 0 can be transformed to those with
αM = 0, βN �= 0 by the change of coordinates. Thus, proper treatment of equations with
βN �= 0 is important. In fact, equations with βN �= 0 are related to interesting physics such as
the inhomogeneous Heisenberg ferromagnet.

In the appendix, we calculate Tr [VN {σ − 	(1)}], equation (A.7) is for the M = 1 case
and equation (A.8) is for the M = 2 case. For the M = 1 case, equations (19) and (A.7) give
a Darboux invariant,

Tr

(
(VN−1)

2 + 2VNVN−2 + βN e
∫

α1 dzg(z, z̄)

∫
VN−1U0

g(z, z̄)
e− ∫

α1 dz dz

)
. (20)
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For the M = 2 case, we have a Darboux invariant,

Tr

(
(VN−1)

2 + 2VNVN−2 +
4

3
βN e

∫
α1 dzg(z, z̄)

∫
1

g(z, z̄)

(
VN−1U0 +

1

2
VN−2U1

)
e− ∫

α1 dz dz

)
.

(21)

These Darboux invariants constrain the matrix elements of VN−2. For the M = 1 case, VN−2

is given by

VN−2 = −
(

2w(z, z̄)2|ψ |2
g(z, z̄)

+ βN e
∫

α1 dz

∫
2w(z, z̄)

g(z, z̄)
|ψ |2 e− ∫

α1 dz dz + hN(z, z̄)

)
T

+

(
0 ψ3(z, z̄)

−ψ3(z, z̄)
∗ 0

)
, (22)

where ψ3 is a functional of field variables and hN(z, z̄) is an inhomogeneity function. VN−2

for M = 2 case can be similarly constructed. The appearance of nonlinear terms including an
integration on z is an interesting feature of the present formalism.

2.5.3. Invariants of VN−3. We first find the following identity, which can be derived similarly
as in equation (14):

Tr
(
V

[N]
N−1V

[N]
N−2 + V

[N]
N V

[N]
N−3

)

= Tr(VN−1VN−2 + VNVN−3) + βNTr(VNσ 2 + VN−1σ) + βN−1Tr(VNσ). (23)

Now the compatibility of the Lax pair (3) at k = N + M − 1 (σ3-component) gives
αMVN = βNUM . Thus, for equations with αM = 0, we have βN = 0. Then, we need
to calculate Tr(VNσ) in equation (23). For M = 2, equations (23) and (A.8) give a Darboux
invariant of following form:

Tr

(
VN−1VN−2 + VNVN−3 +

2

3
βN−1 e

∫
α1 dzg(z, z̄)

×
∫

1

g(z, z̄)

(
VN−1U0 +

1

2
VN−2U1

)
e− ∫

α1 dz dz

)
. (24)

This invariant will be used to construct the diagonal matrix element of VN−3 in the following
section.

3. Integrable equations with variable spectral parameter

3.1. Case (A): M = 1, M̄ = 0, N = 2, N̄ = 0 equations

This case gives the generalized NLSEs with variable spectral parameters. The Darboux
invariants on Ui give the following form:

U = λU1 + U0 = i

2
λf (z, z̄)

(
1 0
0 −1

)
+

(
0 ψ

−ψ∗ 0

)
. (25)

More generally, ψ can be substituted by a functional of ψ . Similarly, the constraints from the
Darboux invariance on V give

V = λ2V2 + λV1 + V0 = λ2g(z, z̄)T + λ

(
iv1/2 wψ

−wψ∗ −iv1/2

)

−
(

2w2

g
|ψ |2 + 2β2 e

∫
α1 dz

∫
e− ∫

α1dz w

g
|ψ |2 dz + h2(z, z̄)

)
T +

(
0 ψ3

−ψ∗
3 0

)
,

(26)

6
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where g, v1, h2 are inhomogeneity functions (invariants under the Darboux transformation)
and ψ3 is a functional of ψ . w = w(z, z̄) is introduced such that wψ is a simplest functional
of ψ . The inhomogeneity functions as well as the structure functions αi, βi will be determined
from the compatibility of Lax pair, equation (3). Note the appearance of a term containing an
integral on |ψ |2 in V0. Equation (22) shows that this term appears only when βN = β2 �= 0.

The compatibility of the Lax pair at the order of O(λ2) gives

∂g − fβ2 + 2gα1 = 0, f w − g = 0, (27)

and we have w = g/f . At the order of O(λ1), we have

∂v1 + v1α1 + 2gα0 − fβ1 − ∂̄f = 0,
(28)

ψ3 =
(

v1

f
− i

g

f 2
α1 − i

∂g

f 2
+ ig

∂f

f 3

)
ψ − i

g

f 2
∂ψ.

At the order of O(λ0), we have

−∂h2 + v1α0 − fβ0 = 0,
(29)

∂̄ψ − ∂ψ3 + i

(
2w2

g
|ψ |2 + 2β2 e

∫
α1 dz

∫
e− ∫

α1 dz w

g
|ψ |2 dz + h2 + iwα0

)
ψ = 0,

such that

h2 = h2(z, z̄) =
∫

(v1α0 − fβ0) dz + h̃2(z̄), (30)

where h̃2(z̄) is an arbitrary function. The second equation of equation (29) becomes the
equation of motion for ψ .

Now, the existence of λ(z, z̄), i.e., ∂∂̄λ(z, z̄) = ∂̄∂λ(z, z̄), constrains the structure
functions αi, βi such that

∂β2 + α1β2 = 0, ∂̄α1 = 2α0β2 + ∂β1, α1β0 + ∂̄α0 = α0β1 + ∂β0. (31)

There are many possibilities for solutions of these constraints. Here, we present some possible
interesting cases.

3.1.1. β2 = 0, β1 = ∂̄M(z, z̄), α1 = ∂M(z, z̄), α0 = β0 = 0. Equations (27)–(29) give
g = e−2M, f = ∂N e−M, v1 = ∂̄N e−M and

ψ3 =
(

∂̄N

∂N
+ i

∂2N

(∂N)3

)
ψ − i

(∂N)2
∂ψ, (32)

where M = M(z, z̄), N = N(z, z̄) are arbitrary functions. (Distinguish these from those in
equation (1).) The equation of motion in equation (29) becomes

∂̄ψ +
2i

(∂N)2
|ψ |2ψ +

i

(∂N)2
∂2ψ −

(
∂̄N

∂N
+

3i∂2N

(∂N)3

)
∂ψ

+

(
∂2N∂̄N

(∂N)2
− ∂∂̄N

∂N
+

3i(∂2N)2

(∂N)4
− i∂3N

(∂N)3
+ ih̃2(z̄)

)
ψ = 0. (33)

3.1.2. β2 = α1 = β1 = 0, α0 = ∂M(z, z̄), β0 = ∂̄M(z, z̄). Equations (27)–(29) give

g = g(z̄), v1 =
∫

(∂̄f − 2g∂M) dz,

(34)

ψ3 =
(

i
g∂f

f 3
+

1

f

∫
∂̄f dz − 2gM

f

)
ψ − i

g

f 2
∂ψ

7
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and

h2(z, z̄) = −gM2 −
∫

∂̄(f M) dz + M

∫
∂̄f dz. (35)

The equation of motion, in this case, is (we take h̃2 = 0)

∂̄ψ + i
g

f 2
∂2ψ + 2i

g

f 2
|ψ |2ψ −

(
3ig∂f

f 3
− 2gM

f
+

∫
∂̄f dz

f

)
∂ψ + ϒψ = 0, (36)

where

ϒ = −i
∫

∂̄(f M) dz + iM
∫

∂̄f dz − i∂

(
g∂f

f 3

)
− igM2

− 2gM∂f

f 2
+

g∂M

f
− ∂

(∫
∂̄f dz

f

)
, (37)

where f = f (z, z̄), g = g(z̄).

3.1.3. β2 = exp[−M(z, z̄)], α1 = ∂M(z, z̄), β1 = ∂̄M(z, z̄), α0 = β0 = 0. The
compatibility of the Lax pair gives (we take h̃2 = 0)

f = ∂N e−M, g = N e−2M, v1 = ∂̄N e−M,
(38)

ψ3 =
(

− i

∂N
+ i

N∂2N

(∂N)3
+

∂̄N

∂N

)
ψ − i

N

(∂N)2
∂ψ, h2 = 0,

where N = N(z, z̄) is an arbitrary function. The equation of motion is

∂̄ψ + i
N

(∂N)2
∂2ψ + 2i

N

(∂N)2
|ψ |2ψ +

(
2i

∂N
− ∂̄N

∂N
− 3i

N∂2N

(∂N)3

)
∂ψ + ϒψ, (39)

where

ϒ = −∂∂̄N

∂N
+

∂̄N∂2N

(∂N)2
− 2i

∂2N

(∂N)2
− i

N∂3N

(∂N)3
+ 3i

N(∂2N)2

(∂N)4
+ 2i

∫ |ψ |2
∂N

dz. (40)

3.2. Case (B): M = 2, M̄ = 0, N = 3, N̄ = 0 equation

We take αM = α2 = βN = β3 = 0, see discussion in subsection 2.5.3. In this case, we have

U = λ2U2 + λU1 + U0

= i

2
λ2f (z, z̄)

(
1 0
0 −1

)
+ λ

(
0 ψ

−ψ∗ 0

)
− 2

f
|ψ |2T +

(
0 φ

−φ∗ 0

)
. (41)

Here, we take F = 0 in equation (15) for simplicity. ψ and φ are field variables.
Similarly, the Darboux invariants of V give

V = λ3V3 + λ2V2 + λV1 + V0

= λ3g(z, z̄)T + λ2(v2T + wU1)

+ λ

(
−2w2

g
|ψ |2T − h3T +

(
0 ψ3

−ψ∗
3 0

))
+ v0T +

(
0 ψ4

−ψ∗
4 0

)
, (42)

where h3, v2, w are arbitrary real functions. ψ3 and ψ4 are functionals of ψ and φ. v0 is
determined by the Darboux invariant (24) with N = 3 as following. We calculate the Darboux
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invariant (24) and set it to be an inhomogeneity function ṽ0(z, z̄) such that

Tr

(
V2V1 + V3V0 +

2

3
β2 e

∫
α1 dzg(z, z̄)

∫
1

g(z, z̄)

(
V2U0 +

1

2
V1U1

)
e− ∫

α1 dz dz

)

= − g

2
v0 +

1

2
v2

(
2w2

g
|ψ |2 + h3

)
− w(ψψ∗

3 + ψ∗ψ3)

+
2

3
β2 e

∫
α1 dzg

∫ (
v2

fg
|ψ |2 − w(ψφ∗ + ψ∗φ) − 1

2
(ψψ∗

3 + ψ∗
3 ψ)

)
e− ∫

α1 dz dz

= ṽ0(z, z̄). (43)

Now, the existence of λ(z, z̄), i.e., ∂∂̄λ(z, z̄) = ∂̄∂λ(z, z̄), gives

∂β3 + 2α1β3 = 0, α1β2 + 3α0β3 + ∂β2 = 0,
(44)

∂̄α1 − 2α0β2 − ∂β1 = 0, α1β0 + ∂̄α0 = α0β1 + ∂β0.

Here, we present one possible solution,

β3 = α2 = α0 = 0, β2 = e−M(z,z̄),
(45)

β1 = ∂̄M(z, z̄), β0 = eM(z,z̄), α1 = ∂M(z, z̄).

In the following, we take g(z, z̄) = 1, for simplicity. The compatibility of the Lax pair at
various orders of λ gives

w = 1/f, f = 3

2
eM∂M, ψ3 = v2

f
ψ +

1

f
φ, v2 = 3

2
eM∂̄M,

ψ4 =
(

2

3

h1

eM∂M
+

2

9
i

1

e2M∂M
+

4

9
i

∂2M

e2M(∂M)3

)
ψ − 4

9

i

e2M(∂M)2
∂ψ

+
16

27

|ψ |2ψ
e3M(∂M)3

+
φ

e3M∂M

∫
e3M(∂∂̄M + 3∂M∂̄M) dz,

h3 = −e2M(z,z̄), ṽ0 = 0,

v0 = −8

9

φψ∗ + φ∗ψ
e2M(∂M)2

− 4

3

∂̄Mψψ∗

eM(∂M)2
− 4

3

∫
φψ∗ + φ∗ψ

e2M∂M
dz, (46)

and the equation of motion for ψ and φ,

i∂̄ψ = −4

3

∂̄M

eM(∂M)2
|ψ |2ψ + i

∂̄M

∂M
∂ψ +

(
2

3
i

∂2M

eM(∂M)2
− e2M

)
φ

+
2

3
i

1

eM∂M
∂φ + i∂

(
∂̄M

∂M

)
ψ − v0ψ,

∂̄φ − ∂ψ4 − i
2

f
|ψ |2ψ4 − iv0φ + eMψ = 0. (47)

3.3. Case (C): M = M̄ = N = N̄ = 1 equation

In this case, we have

U = λU1 + U0 +
1

λ
U−1

= i

2
λf (z, z̄)

(
1 0
0 −1

)
+

(
0 ψ

−ψ∗ 0

)
+

1

λ

(
iR Q

−Q∗ −iR

)
, (48)

where ψ,R,Q are field variables.
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The Darboux invariants for Vi as well as the compatibility of the Lax pair give following
form for V :

V = λ1V1 + V0 +
1

λ
V−1

= λg(z, z̄)T + v1T + v2U0 + v0

(
0 Q

−Q∗ 0

)
+

1

λ
v3U−1, (49)

where v0, v1, v2, v3 are arbitrary real functions.
As in the previous examples, the existence of λ(z, z̄), i.e., ∂∂̄λ(z, z̄) = ∂̄∂λ(z, z̄) constrains

the structure functions αi, βi . Here, we take α1 = ∂M, β1 = ∂̄M and ai = βi = 0, i �= 1,
such that

λ = µ eM, (50)

where µ is a complex constant (the hidden spectral parameter) and M = M(z, z̄) is a real
function.

The compatibility of the Lax pair at various orders of λ gives

v0 = 0, v2 = g/f, v1 = constant, ∂̄f + β1f = ∂g + α1g, (51)

which has a solution,

f = ∂N e−M, g = ∂̄N e−M, (52)

where N = N(z, z̄) is an arbitrary function. Equations of motion for ψ,Q,R are

∂̄ψ − ∂(gψ/f ) + i(v3f − g)Q − iv1ψ = 0,

∂̄Q − β1Q − ∂(v3Q) + α1v3Q − 2iv3Pψ − iv1Q + 2igRψ/f = 0, (53)

∂̄R − β1R − ∂(v3R) + α1v3R + i(v3 − g/f )(ψQ∗ − ψ∗Q) = 0.

These equations of motion are consistent with the following Darboux invariant condition:

Tr(V−Ñ )2 = −2v2
3(|Q|2 + R2) = −2v2

3κ(z, z̄), (54)

where κ(z, z̄) (= −Tr(U−M̃ )2/2) is an inhomogeneity function. In fact,

∂̄κ = Q∂̄Q∗ + Q∗∂̄Q + 2R∂̄R = v3∂̄κ + 2κ∂v3 + 2(β1 − v3α1)κ, (55)

which shows that κ is related only to v3, α1, β1 and not to the field variables ψ,P,Q. As an
example, we take κ(z, z̄) = constant. In this case, equation (55) gives

v3 = eM∂̄

∫
e−M dz. (56)

4. One-soliton

In this section, we calculate one-soliton solutions of the integrable equations constructed in
the previous sections. This can be achieved using the Darboux transformation in section 2.3.

4.1. One-soliton of case (A)

The spectral parameter in the case of subsection 3.1.3 is given by

λ = −eM(z,z̄)

z̄ − µ
, (57)

10
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where µ is the hidden spectral parameter. Starting from the trivial solution ψ = 0, we obtain
a solution of the associated linear equation (1),

�1 = exp

(
− i

2

N

z̄ − µ1
σ3

)
�0, (58)

where µ1 = µr + iµi is a specific value of the hidden spectral parameter and �0 is an arbitrary

constant 2-component column matrix. We take �0 = (
1
1

)
. Define real-valued �r,�i such that

− N

z̄ − µr − iµi

≡ �r + i�i. (59)

Then, the projector P in equation (5) becomes

P = 1

2
sech�i

(
e−�i ei�r

e−i�r e�i

)
. (60)

Now, the one-soliton solution ψ [N] is obtained by using equation (10),

U
[N]
0 =

(
0 ψ [N]

−ψ [N]∗ 0

)
= [f T , λ∗

1 + (λ1 − λ∗
1)P ], λ1 = − eM(z,z̄)

z̄ − µ1
, (61)

such that

ψ [N] = −∂N

N
�isech�i ei�r . (62)

It was explicitly checked that ψ [N] satisfies the equation of motion in equation (39).

4.2. One-soliton of case (B)

Here, we treat the case M(z, z̄) = z. Then, the variable spectral parameter λ determined by
equation (45) is

λ = tan(z̄ − µ) ez, (63)

where µ is the hidden spectral parameter. Starting from the trivial solution ψ = φ = 0, we
obtain a solution of equation (1),

�1 = exp
( i

4
tan2(z̄ − µ1) e3zσ3

)
�0, (64)

where µ1 = µr + iµi . Define �r,�i such that

1

2
tan2(z̄ − µ1) e3z = 1

2
e3z {sin(2z̄ − 2µr) − i sinh 2µi}2

{cosh 2µi + cos(2z̄ − 2µr)}2
≡ �r + i�i. (65)

Then, the projector P becomes that of equation (60) where �r and �i are replaced by
equation (65). The one-soliton solution for ψ [N] is similarly obtained as in equation (61),

ψ [N] = 3

2
e2z sinh 2µi

cosh 2µi + cos(2z̄ − 2µr)
sech�i ei�r . (66)

Now, equations (10) and (41) give

U
[N]
0 = −4

3
e−z|ψ [N]|2T +

(
0 φ[N]

−φ[N]∗ 0

)

= U0 + [U1, σ ] + [U2, σ ]σ − α2{	(1) − σ } = [f T , σ ]σ, (67)

such that

φ[N] = 3

2
e3z+i�r

sinh 2µi

{cosh 2µi + cos(2z̄ − 2µr)}2
sech�i{sin(2z̄ − 2µr) − i sinh 2µi tanh �i}.

(68)

It was explicitly checked that ψ [N], φ[N] satisfy the equations of motion in equation (47).
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4.3. One-soliton of case (C)

We take κ = 1 for simplicity. Starting from the trivial solution ψ = Q = 0, R = 1, we obtain

�1 = exp

(
i

2

(
µ1N +

2

µ1
H + v1z̄

)
σ3

)
�0, (69)

where H = ∫
exp{−M(z, z̄)} dz and µ1 = µr + iµi . Define �r,�i such that

µ1N +
2

µ1
H = (µr + iµi)N + 2

µr − iµi

|µ1|2 H ≡ �r + i�i. (70)

Then,

P = 1

2
sech�i

(
e−�i ei(�r +v1 z̄)

e−i(�r +v1 z̄) e�i

)
(71)

and

ψ [N] = −µi∂Nsech�i ei(�r +v1 z̄). (72)

Equation (11) gives

U
[N]
−1 =

(
iR[N] Q[N]

−(Q[N])∗ −iR[N]

)

= σU−1σ
−1 = 1

∂H
(µr − iµi + 2iµiP )U−1

∂H

|µ1|2 (µr + iµi − 2iµiP ), (73)

such that

R[N] = 1 − 2
µ2

i

|µ1|2 sech2�i,

(74)
Q[N] = 2

µi

|µ1|2 (µr − iµi tanh �i)sech�i ei(�r +v1 z̄).

It was explicitly checked that (R[N])2 + |Q[N]|2 = 1 and ψ [N], R[N],Q[N] satisfy the equations
of motion in equation (53).

5. Discussion

In this paper, we study the Darboux transformation of integrable equations with variable
spectral parameters. We construct Darboux invariants of U and V , which give constraints
on the matrix elements of U and V . It gives important criteria in constructing integrable
equations. Especially, we need αM = 0 for M � 2. For βN �= 0 or βN−1 �= 0 cases, specific
forms of VN−1, VN−2, VN−3 are obtained using the Darboux transformation property.

Burtsev et al [16] constructed a simple type of equation with variable spectral parameters
using ansatz on forms of Ui and Vi and applying the compatibility. But this method does not
give systematic understanding of the appearance of nonlinear terms in equation (22) or (24),
or various inhomogeneity functions resulting from the Darboux invariants. Our formalism
systematically determines Ui or Vi of integrable equations , which is effective especially for
equations of complex nature.

In the present work, we have not studied the most general form of Darboux invariants and
many inhomogeneity functions are set to be zero or constant, even though they can be explicit
functions of z and z̄. This generalization remains an interesting work.

The Darboux covariance method was used to construct (2 + 1)-dimensional integrable
equations [21] and multi-variables equations, where U and V span the Hermitian symmetric
spaces [23]. Present formalism can provide the construction of integrable equations of these
kinds of equations with variable spectral parameters.
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Appendix

Firstly, we obtain a differential equation for σ such that

∂σ − α−M̃	(−M̃)(1 − δM̃,1) −
M∑

m=−M̃+1

αmσm + 2
M∑

m=2

αm

m−2∑
n=0

σm−n	(n)

−
M∑

m=0

[Um, σ ]σm + σ

M̃∑
m=1

[U−m, σ−1]σ−m+1 = 0, (A.1)

where we use the O(λ0) term of equation (9), the last equation of equation (10), (7) and (2).
The formal solution of equation (A.1) for the M = 1, M̃ = 0 case becomes

σ = e
∫

α1 dz

(∫
([U0, σ ] + [U1, σ ]σ + α0) e− ∫

α1 dz dz + c

)
, (A.2)

while for the M = 2, M̃ = 0 case,

σ = e
∫

α1 dz

(∫
([U0, σ ] + [U1, σ ]σ + [U2, σ ]σ 2 − α2σ

2 + α0) e− ∫
α1 dz dz + c

)
. (A.3)

Now, we calculate Tr [VN {σ − 	(1)}] for the case of M̄ = 0,M = 1. We first note that
Tr [VN	(1)] = 	(1)g(z, z̄)TrT = 0. Now, the following identities are required:

Tr(T [U1, σ ]σ) = 1
2 Tr ([σ, T ][U1, σ ]) , (A.4)

where we used [U1, T ] = f (z, z̄)[T , T ] = 0, and

Tr(T [U0, σ ]) = Tr([σ, T ]U0). (A.5)

By using these results, we obtain

Tr(T [U1, σ ]σ + T [U0, σ ]) = 1

2g(z, z̄)
Tr

(
[σ, VN ]

(
U

[N]
0 + U0

))

= 1

2g(z, z̄)
Tr

(
VN−1U0 − V

[N]
N−1U

[N]
0

)
, (A.6)

where we have used equation (10) and TrVN−1U
[N]
0 = TrV [N]

N−1U0, see equations (13) and (18).
By collecting all these results and using equation (A.2), we finally obtain

Tr [VN {σ − 	(1)}]
= e

∫
α1 dzg(z, z̄)

∫
1

2g(z, z̄)
Tr

(
VN−1U0 − V

(N)
N−1U

(N)
0

)
e− ∫

α1 dz dz. (A.7)

Now, we calculate Tr (VN {σ − 	(1)}) for the case of M̄ = 0,M = 2 and α2 = 0. By
using equation (A.3), a similar procedure as in M̄ = 0,M = 1 case gives

Tr [VN {σ − 	(1)}] = 2

3
e
∫

α1 dzg(z, z̄)

×
∫

1

g(z, z̄)
Tr

(
VN−1U0 − V

(N)
N−1U

(N)
0 +

1

2
VN−2U1 − 1

2
V

(N)
N−2U

(N)
1

)
e− ∫

α1 dz dz.

(A.8)

Here we have used equations (11) and their corresponding equations for Vm, as well as the
fact that VN = g(z, z̄)T and [U2, VN−2] + [U1, VN−1] + [U0, VN ] = 0 (see equation (3)).
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